指南与解读

文章编号:1005-2208(2013)06-0470-05

甲状腺及甲状旁腺手术中神经电生理监测 临床指南(中国版)

中国医师协会外科医师分会甲状腺外科医师委员会

中图分类号:R6 文献标志码:A

【关键词】 甲状腺;甲状旁腺;术中神经监测

Keywords thyroid; parathyroid; intraoperative neuromonitoring

喉返神经损伤是甲状腺手术最严重的并发症之一,单 侧喉返神经损伤引起的声音嘶哑及双侧喉返神经损伤引 起的呼吸不畅甚至窒息等都会给病人生活造成极大的影 响。据统计,甲状腺手术喉返神经的损伤率为0.3%~ 18.9% [1-5], 喉返神经的保护问题一直都是甲状腺外科医生 关注的热点。术中神经监测(intraoperative neuromonitoring,IONM)技术将功能学与解剖学紧密结合,具有术中导 航,快速识别喉返神经走行;预测变异,保护喉返神经功能 完整;阐明机制,降低喉返神经损伤发生率;操作简便等特 点,是对复杂手术的有效辅助工具[6-7]。

为帮助临床外科医师深入了解、规范化开展并合理应 用术中神经监测技术,中国医师协会外科医师分会甲状腺 外科医师委员会特制定本指南。

1 IONM基本原理

甲状腺手术中应用 IONM 系由 Shedd (1966年)及 Flisberg(1970年)提出。其为利用电生理原理,在术中通过 电刺激运动神经,形成神经冲动并传导至支配肌肉产生肌 电信号,形成肌电图(electromyography, EMG)波形及提示 音,进而判断神经功能完整性[8-9]。见图 1。

2 IONM的意义及技 术优势

IONM技术对于 正在由全科向专科转 型的医生、低年资医 生,以及面对复杂甲 状腺手术的医生, IONM无疑是较好的 辅助工具[10-12]。

2.1 协助识别与定 位喉返神经 显露神 经前,运用"十字交叉

EMG肌电图 刺激探针 表面电极

喉部

图2 IONM定位神经"损伤点"

法"在走行区精确定位,可快速限定喉返神经解剖范围;识 别罕见解剖变异如非返性喉返神经[13]。

2.2 协助显露与解剖喉返神经 解剖神经时连续监测结

踪神经及功能分支;术中导航同时有助于病变彻底切除。 2.3 协助判断神经功能完整性与损伤机制 电生理监测 为神经功能完整性的判断提供了量化指标,能够准确定位 神经"损伤点"[4](见图 2),协助术者分析损伤机制,术中及 时识别并解除损伤,可明显降低喉返神经损伤的发生率。

合肉眼识别,鉴别所监测神经及周围非神经组织,精确追

3 IONM适应证^[15-18]

以下病人优先考虑使用IONM,其他依医生建议应用: (1)甲状腺肿物位于腺体背侧,可疑近期囊内出血或甲状 腺癌者;(2)甲状腺功能亢进病人,术前超声提示腺体大且 内部血供丰富者;(3)甲状腺恶性肿瘤需行颈部淋巴结清 扫,尤其有中央组淋巴结肿大者;(4)甲状腺再次手术,解 剖结构紊乱,组织粘连重者;(5)胸骨后甲状腺肿,巨大甲 状腺肿物,考虑喉返神经有移位者;(6)术前影像学提示有 内脏转位或锁骨下动脉变异,可疑非返性喉返神经者;(7) 已有单侧声带麻痹,对侧叶需行手术治疗者;(8)需行甲状 腺全切除术,特别是腔镜下手术;(9)喉返神经损伤后的修 复手术;(10)甲状旁腺手术;(11)对音质、音调有特殊要求 者,要求术中应用IONM的病人等。

特别说明:(1)如术中探查发现甲状腺癌完全侵透喉返 神经,保留神经将不可避免造成肿瘤残留,为彻底切除肿 瘤,需切除受侵神经。此种情况下,即使应用IONM也无法

www.medlive.cn

迷走神经

喉部

避免术后出现声音嘶哑。(2)如病人术前有声带麻痹,可借助IONM寻找损伤点,在IONM辅助下完成神经修复,但神经功能很难完全恢复。

由于在甲状腺及甲状旁腺术前不可能预测所有的复杂病例,条件允许情况下可适当放宽IONM指征。国外也有相同的建议表明,因为术前难以预见喉返神经变异,条件允许下可常规使用IONM。

4 IONM基本监测设备

IONM监测系统可分为记录端(记录电极及其接地电极)和刺激端(刺激探针及其回路电极)以及EMG监测仪、界面盒、抗干扰静音检测器、病人模拟器等[19]。见图3。

针状电极和气管插管表面电极是最为典型的两种记录 电极,推荐常规使用表面电极^[20]。

刺激探针分为单极型和双极型,推荐使用单极 Prass 球

头探针[21]。

5 IONM标准化步骤

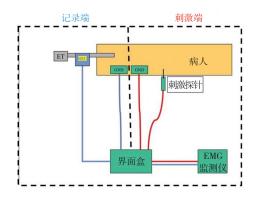
不规范应用 IONM 技术会导致显著的监测误差。 IONM标准化步骤的主要目的在于指导并提高术中神经监测技术的质量,避免不正确监测操作带来不利影响[22-24]。 IONM标准化操作步骤见表1。

6 IONM常见故障原因分析及解决方案

术中IONM故障发生率可达3.8%~23.0%^[27]。监测故障会给术者带来极大的心理压力,延缓手术进程,甚至使术者做出错误决策。因此,有必要掌握IONM常见故障原因分析及解决方案,有利于手术安全顺利进行。IONM常见故障原因分析及解决方案见表2,排查决策程序^[28]见图5。

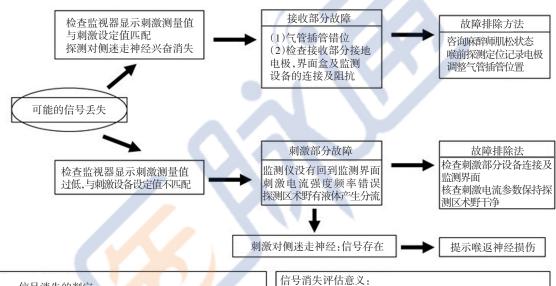
规范化应用IONM可帮助85%的初学者顺利定位喉神

表1 IONM标准化操作步骤


操作	备注
1 术前记录声带运动情况	应用纤维喉镜
2 IONM麻醉推荐方案	术前麻醉诱导建议选用中效或短效肌松剂,中效肌松剂要小于常规麻醉诱导用量,建
	议选用1倍ED。。中效非去极化肌松剂,术中监测结束前避免追加肌松剂
3 体位及插管	摆放手术体位后麻醉插管,建议可视喉镜下插管
4 设备连接及检验	
(1)接地电极常规放置在双肩或剑突处皮下	
(2)确认监测系统建立有效	
检查电极阻抗及阻抗差值	电极阻抗 $<5k\Omega$,阻抗差值 $<1k\Omega$
查看肌电基线	基线波动在10μV左右
设置事件阈值	通常为100 μV
(3)刺激探针电流强度应常规设定为1~3 mA	
(4)将监测设备放置在远离电外科	
设备的地方,并连接抗干扰静音探测器	
(5)术中确认记录电极位置	应用刺激探针在喉前中线直接探测定位记录电极深度
5 IONM 四步法	
第一步,V1信号	在甲状腺下极水平(B点)探测同侧迷走神经获得明显的双相肌电信号(证明监测系
	统成功建立),如B点无信号,探测甲状腺上极水平迷走神经(A点),A点获得信号证
	实存在非返性喉返神经变异[25](见图 4)
第二步,R1信号	显露喉返神经前,用探针先在其走行区垂直气管,然后平行气管,进行"十字交叉法"
	定位,显露喉返神经后的肌电信号
第三步,R2信号	解离喉返神经过程中连续监测,实时比较信号变化全程显露后,探测显露部最近端获
	得的肌电信号
第四步, V2 信号	术野彻底止血后,关闭切口前,探测迷走神经肌电信号
6 信号解读	
肌电波形基本参数	双相波形,需与单相的非肌电反应型伪差信号鉴别
	EMG基本参数包括:振幅、潜伏期和时程 ^[26] (见图6)
R2,V2信号未见明显减弱	喉返神经功能完整
R2,V2信号丢失	手术操作中喉返神经受损,探查神经"损伤点",查找损伤原因10
7 术中拍照记录暴露的喉返神经	以确认喉返神经连续性(视觉完整性)
8 术后喉镜检查	

注:1)当无法探及"损伤点"时,首先确定是"真的"信号丢失。①刺激神经,通过喉镜检查气管插管电极与声带接触情况;②关闭切口前再次探测迷走神经及喉返神经

非返性喉返神经


ET:气管插管 REC:记录电极 GND:接地电极 EMG:肌电图

В В 迷走神经 迷走神经 迷走神经监测结果 正常神经信号 非返神经信号 有信号 无信号 (甲状腺下极水平) 有信号 有信号 (甲状腺上极水平)

正常喉返神经

图3 IONM 监测设备模式图

非返性喉返神经监测模式图

信号消失的判定:

- (1)肌电信号明显低于初始肌电信号(>50%)
- (2)1~3mA电流刺激时无信号或低于100μV
- (3)探测神经时,喉镜观察声带运动受限或固定

- (1)定位损伤点,判断损伤类型:
- 1型(部分信号改变,存在损伤点)
- 2型(全程信号消失,无损伤点)
- (2)考虑对侧手术时间,避免双侧声带麻痹

图5 IONM常见故障排查决策程序

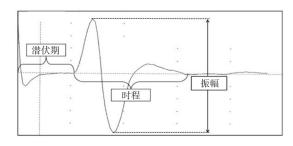


图6 术中神经监测 EMG 波形的基本参数

经,为外科医生提供了神经功能量化指标,辅助外科医师 应对复杂解剖结构,巧妙躲避危险区域,聆听神经提示音

下眼耳并用,"点切"肿瘤,成为肉眼识别保护金标准的有 效辅助工具。中国医师协会外科医师分会甲状腺外科医 师委员会在制定《甲状腺及甲状旁腺手术中神经电生理监 测临床指南(中国版)》中,力求以"简单、有效、实用"为原 则,讲解IONM标准化操作步骤、决策程序等模块。临床外 科医师在应用IONM前,应全面认识神经监测系统并充分 理解本指南,通过规范化监测基地培训与认证。我们认 为,外科医师凭借精湛的技术,在IONM的辅助下,进一步 降低喉返神经损伤发生率,提高手术安全性和彻底性,将 成为甲状腺手术中喉神经保护新的趋势[29]。

表2 IONM常见故障原因分析及解决方案

常见故障	原因分析	解决方案
电极阻抗过高:	皮下电极脱离病人,尚未完全脱出	检查皮下电极是否脱落,保持电极干净
皮下电极>10 kΩ	电极本身阻抗过高	更换电极,重新留置,胶带固定
刺激探针电极>25 kΩ	电极芯与病人界面盒接触不良	检查病人界面盒连接情况
	界面盒与监测仪接触不良	
记录电极:	记录电极与声带接触不良	纤维喉镜下调整插管深度及角度
单电极阻抗> $5k\Omega$	气管插管表面电极移位	常规可视喉镜下留置气管插管
阻抗差值>1kΩ	插管前涂擦绝缘性润滑剂	记录电极处禁止涂擦绝缘介质
电极阻抗为0	2枚皮下电极发生接触	重新留置皮下电极,2枚电极距离>1 cm
电刀干扰	没有连接抗干扰静音探测器探头	将电刀设备电缆打环,抗干扰静音探测器夹在
上 VA /1. 115 VB / エ / ナカン・ビ	亡 上头	合股电缆上 包木-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-
标准化监测系统建立后,	病人术前声带麻痹	复查术前喉镜记录
甲状腺手术操作前,	术者探及神经并非迷走神经	确认显露迷走神经后1mA探测
无法探及 V1 信号	显露迷走神经操作已造成损伤	用3mA刺激强度直接探测颈鞘获得V1信号
	存在非返性喉返神经变异	甲状腺下极水平迷走神经无信号时,复测甲状
		腺上极水平
	麻醉诱导未按监测推荐应用	等待肌松剂失效或适量应用肌松药拮抗剂
	肌松剂类型或剂量不当	
	探测电流强度不够	检查监视器显示刺激测量值与刺激设置值是否 匹配
		再次检查各电极及病人界面盒连接情况。
		检查病人界面盒保险丝是否熔断
	刺激脉冲频率过低	刺激脉冲频率默认每秒释放 4次
	事件阈值设置过高	常规 100 μV, 不要随意更改参数
	监测模式、通道、音量选择不当	复查监测模式、通道、音量设置
	探测神经停留时间过短	每次探测时间至少1 s
	探针损坏,绝缘层脱落	避免重复使用
	神经探测区域分流太大	清除探测区域液体
	探测神经效应肌肉与记录电极脱离	复香记录电极是否脱落
	71241 ZZ90ZZ04 3 37231 Z 20041 3	气管插管表面电极深度可用喉前正中探测定位
未探测神经时,出现肌电信号	连续"序列"EMG 反应不能解释	麻醉状态较浅,喉肌自主运动
NEWINITEEN, HOUNDELLE	7173 200 202 1 110/01/11	记录神经或肌肉被其他原因牵引
	非神经走行区出现假信号	气管插管表面电极位置过深
	探测电流过大	直接探测神经主干推荐1mA
	TAN EMIZIC	术中结合解剖结构及肌电信号调整
V1信号良好,证实监测	术中麻醉或肌松状态变化	监测完成前避免追加肌松剂等
系统标准化建立,	神经离断伤	检查神经连续性
识别解剖喉返神经时信号	非肉眼可见的神经损伤	定位损伤点,分析损伤机制:牵拉损伤、热损伤、
减弱>50%或丢失	7月79年7月7日7月7日本1次7月	吸引器损伤、丝线切割损伤等
99997/3010以ム八	监测系统故障	复查各电极连接确保回路良好
	血肉不利以件	友宣吞电极连接蝴珠回路良好 应用模拟器复查监测仪主机、病人界面盒(保险
		应用模拟奋发宜监侧仪主机、烟八介田盖(休座 丝)等
	术中国汇位 体位笔亦为类战和基中权利	
	术中因头位、体位等变动造成记录电极移位	复查喉镜,调整插管

《甲状腺及甲状旁腺手术中神经电生理监测临床指南(中国版)》编写委员会成员(排名不分先后):田文,姜可伟,江 豐裕,孙辉,王平,黄韬,朱精强,秦建武,刘晓莉执笔者:孙辉

参考文献

[1] Dralle H, Sekulla C, Haerting J, et al. Risk factors of paralysis and functional outcome after recurrent laryngeal nerve monitoring in thyroid surgery[J]. Surgery, 2004, 136(6):1310–1322.

- [2] Chiang FY, Wang LF, Huang YF, et al. Recurrent laryngeal nerve palsy after thyroidectomy with routine identification of the recurrent laryngeal nerve[J]. Surgery, 2005, 137(3): 342–347.
- [3] Chiang F Y, Lee K W, Huang Y F, et al. Risk of vocal palsy after thyroidectomy with identification of the recurrent laryngeal nerve [J]. Kaohsiung J Med Sci, 2004, 20(9): 431–436.
- [4] 屈新才, 肖勇, 黄韬, 等. 甲状腺癌患者术中喉返神经的显露及损伤预防[J]. 中国癌症杂志, 2008, 18(9): 700-703.
- [5] 刘春萍, 黄韬. 甲状腺手术喉返神经损伤的原因及处理探讨 [J]. 中国普外基础与临床杂志, 2008, 15(5): 314-317.
- [6] Dionigi G, Barczynski M, Chiang F Y, et al. Why monitor the recurrent laryngeal nerve in thyroid surgery [J]. J Endocrinol invest, 2010, 33(11): 819–822.
- [7] 刘晓莉, 孙辉, 郑泽霖, 等. 甲状腺术中喉返神经监测技术的应用与进展[J]. 中国普通外科杂志,2009,18(11): 1187-1190.
- [8] 孙辉, 刘晓莉, 连丽新, 等. 喉返神经术中监测的原理与应用 [J]. 中国医学文摘: 耳鼻咽喉科学, 2012, 27(3): 137-140.
- [9] 周刚,姜可伟,叶颖江,等.环杓侧肌肌电图用于喉返神经功能的术中评估[J]. 中华普通外科杂志, 2012, 27(4): 272–275.
- [10] Barczynski M, Konturek A, Cichon S. Randomized clinical trial of visualization versus neuromonitoring of recurrent laryngeal nerves during thyroidectomy[J]. Br J Surg, 2009, 96(3):240–246.
- [11] Dionigi G, Bacuzzi A, Boni L, et al. What is the learning curve for intraoperative neuromonitoring in thyroid surgery? [J]. Int J Surg, 2008,6(suppl 1):7–12.
- [12] 孙辉,刘晓莉,张大奇,等.甲状腺手术中喉返神经保护及监测的临床应用[J].中国普外基础与临床杂志, 2010,17(8): 768-771.
- [13] Chiang FY, Lu I, Chen HC, et al. Anatomical variations of recurrent laryngeal nerve during thyroid surgery: How to identify and handle the variations with intraoperative neuromonitoring [J]. Kaohsiung J Med Sci , 2010, 26(11): 575-583.
- [14] Chiang FY, Lu IC, Kuo WR, et al. The mechanism of recurrent laryngeal nerve injury during thyroid surgery: the application of intraoperative neuromonitoring [J]. Surgery, 2008, 143(6): 743-749
- [15] 孙辉,刘晓莉,付言涛,等.术中神经监测技术在复杂甲状腺手术中的应用[J].中国实用外科杂志, 2010, 30(1): 66-68.
- [16] 秦建武, 黑虎, 张松涛,等.腔镜辅助甲状腺切除术中喉返神

- 经的显露及保护[J]. 肿瘤研究与临床杂志,2010,12(22): 804-805
- [17] 魏涛,李志辉,朱精强喉返神经探测仪实时监测在再次甲状腺手术中的应用[J].中国普外基础与临床杂志,2010,17(8): 772-774.
- [18] 王平, 燕海潮. 完全腔镜甲状腺癌手术并发症的防治[J]. 腹腔镜外科杂志, 2012, 17(11): 806-809.
- [19] Randolph G, Dralle H, Abdullah H,et al. Electrophysiologic recurrent laryngeal nerve monitoring during thyroid and parathyroid surgery: international standards guideline statement [J]. Laryngoscope,2011,121:S1-S16.
- [20] 刘晓莉, 孙辉. 喉返神经监测技术原理与临床应用[J]. 中国 实用外科杂志, 2012, 32(5): 409-411.
- [21] 孙辉,刘晓莉,赵涛,等.甲状腺手术中识别喉返神经新方法的尝试与体会[J].中国医学文摘: 耳鼻咽喉科学, 2010, 25 (1): 46-48
- [22] Chiang FY, Lee KW, Chen HC, et al. Standardization of intraoperative neuromonitoring of recurrent laryngeal nerve in thyroid operation[J]. World J Surg,2010, 34(2):223-229.
- [23] Randolph GW, Kamani D. The importance of preoperative laryngoscopy in patients undergoing thyroidectomy: voice, vocal cord function, and the preoperative detection of invasive thyroid malignancy[J]. Surgery ,2006,139(3):357–362.
- [24] 刘晓莉, 孙辉. 甲状腺手术中喉返神经监测技术的优化与解读[J]. 中国医学文摘: 耳鼻咽喉科学, 2010, 25(3): 152-154.
- [25] 孙辉, 刘晓莉, 赵涛, 等. 术中神经监测识别非返性喉返神经 6 例经验[J]. 中华内分泌外科杂志, 2010, 4(6): 402-404.
- [26] Dralle H, Sekulla C, Lorenz K, et al. German IONM Study Group: Intraoperative monitoring of the recurrent laryngeal nerve and thyroid surgery [J]. World J Surg, 2008,32(7): 1358-1366
- [27] Chan WF, Lo CY. Pitfalls of intraoperative neuromonitoring for predicting postoperative recurrent laryngeal nerve function during thyroidectomy[J]. World J Surg, 2006,30(5):806–812
- [28] 孙辉,刘晓莉.甲状腺手术中喉返神经和喉上神经的保护 [J]. 中国实用外科杂志 2012, 32(5): 356-359.
- [29] 田文,罗晋.中国与美国甲状腺结节与分化型甲状腺癌诊治 指南比较[J].中国实用外科杂志,2013,33(6):475-479.

(2013-05-18收稿)

本期广告目次

独生(上海)医疗器材有限公司	••封囬
柯惠医疗器材国际贸易(上海)有限公司	…封二
上海诺华贸易有限公司 · · · · · · · · · · · · · · · · · · ·	・・封三
强生(上海)医疗器材有限公司	・・封四
强生(上海)医疗器材有限公司 ·····	…彩1
常州市康迪医用吻合器有限公司	…彩2
柯惠医疗器材国际贸易(上海)有限公司	…彩3
葛兰素史克(中国)投资有限公司	…彩4

